| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 
 | import numpy as npfrom matplotlib_inline import backend_inline
 from d2l import torch as d2l
 
 def f(x):
 return 3 * x ** 2 - 4 * x
 
 def numerical_lim(f, x, delta):
 return (f(x + delta) - f(x)) / delta
 
 def use_svg_display():
 """使用svg格式在Jupyter中显示绘图"""
 backend_inline.set_matplotlib_formats('svg')
 
 def set_figsize(figsize=(3.5, 2.5)):
 """设置matplotlib的图表大小"""
 use_svg_display()
 d2l.plt.rcParams['figure.figsize'] = figsize
 
 def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
 """设置matplotlib的轴"""
 axes.set_xlabel(xlabel)
 axes.set_ylabel(ylabel)
 axes.set_xscale(xscale)
 axes.set_yscale(yscale)
 axes.set_xlim(xlim)
 axes.set_ylim(ylim)
 if legend:
 axes.legend(legend)
 axes.grid()
 
 def plot(X, Y=None, xlabel=None, ylabel=None, legend=None, xlim=None,
 ylim=None, xscale='linear', yscale='linear',
 fmts=('-', 'm--', 'g-.', 'r:'), figsize=(3.5, 2.5), axes=None):
 """绘制数据点"""
 if legend is None:
 legend = []
 set_figsize(figsize)
 axes = axes if axes else d2l.plt.gca()
 
 
 def has_one_axis(X):
 return (hasattr(X, "ndim") and X.ndim == 1 or isinstance(X, list)
 and not hasattr(X[0], "__len__"))
 if has_one_axis(X):
 X = [X]
 if Y is None:
 X, Y = [[]] * len(X), X
 elif has_one_axis(Y):
 Y = [Y]
 if len(X) != len(Y):
 X = X * len(Y)
 axes.cla()
 for x, y, fmt in zip(X, Y, fmts):
 if len(x):
 axes.plot(x, y, fmt)
 else:
 axes.plot(y, fmt)
 set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
 
 
 if __name__ == "__main__":
 delta = 1e-5
 tangent = numerical_lim(f, 1, delta)
 print(f'delta={delta:.5f}, numerical limit={tangent:.5f}')
 
 x = np.arange(0.01, 3, 0.005)
 plot(x, [f(x), tangent * x + f(1) - tangent * 1], 'x', 'f(x)', legend=['f(x)', 'Tangent line (x=1)'])
 
 |